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PREFACE

The work described in this report was authorized under Contract
No. DAAD05-96-P-2192. This work was started in March 1996 and
completed in May 1997.

The use of either trade or manufacturers' names in this report
does not constitute an official endorsement of any commercial products.
This report may not be cited for purposes of advertisement.

This report has been approved for public release. Registered
users should request additional copies from the Defense Technical
Information Center; unregistered users should direct such requests to
the National Technical Information Service.
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POLYMER STANDARDS FOR TESTING FOURIER TRANSFORM
INFRARED SPECTROMETERS

1. INTRODUCTION

An ideal sample that is useful for monitoring the
photometric performance of Fourier transform (FT-IR) spectrometers
should be a self supporting solid that is stable over a period of
several years. An isotropic polymer film of the appropriate
thickness mounted between two windows to minimize the effect of
interference fringing and to prevent the sample from being oxidized
by the atmosphere would appear to have properties approaching the
optimum. The polymer spectrum should contain at least one isolated
(ideally Lorentzian) band with an absorbance of between 0.2 and 2
absorbance units (AU). The band should be broad enough that it can
be readily measured with a resolution parameter, p1'2 (i.e., the
ratio of the resolution to the full width at half height of the
band) of 0.2 or less, but narrow enough that it is separated from
the other bands in the spectrum by at least 4 times its full width
at half height (to allow it to be measured at a variety of
different spectrometer resolutions).

Preliminary studies in our laboratory indicated that
isotactic polypropylene films may fulfill these criteria. One
particular band, at 841 cm-1, in the spectrum of isotactic
polypropylene (iPP) seemed exceptionally promising as an FT-IR
standard. We have, therefore, studied the temperature, polarization
and resolution dependence of the center wavenumber and peak
absorbance of this band. This investigation also indirectly
includes a study of the reproducibility of the spectra and the
algorithms for measuring the band centers.

2. EXPERIMENTAL METHODS

Two types of iPP were used in this investigation. The
first type was a 50 gm thick stress relieved material acquired from
Transilwrap (Chicago, IL). The polymer chains in this material are
fairly (but not totally) unoriented so the spectrum exhibited a
small amount of dichroism. The second type was a 6 gm thick
extruded material acquired from Chemplex (Tuckahoe, NY). This
material is more ordered and the spectrum exhibited greater
dichroism.

It was determined that the window of choice would be BaF2
because of the index matching between the window material and the
polypropylene sample. When 4-mm thick windows were used, it was
noted that the cut off of the BaF 2 window gave rise to a problem as
the baseline near 841 cm"1 sloped excessively. This problem was
overcome by simply using a thinner (2-mm) BaF 2 window (International
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Crystal Laboratories, Garfield, NJ).

Spectra were obtained using a Bomem MB-100 FT-IR
spectrometer with a deuterated triglycine sulfate (DTGS) detector
that was known to produce a linear response. The sample was "laced
in a variable-temperature sample cell (Harrick Scientfific,
Ossining, NY) with a Fisher Isotemp refrigerated circulator to
maintain and control the temperature.

3. RESULTS AND DISCUSSION

3.1 SAMPLE DICHROISM

Because of the properties of the materials used in the
fabrication of beamsplitters, the beam in every FT-IR spectrometer
is polarized to some extent. Thus any dichroism exhibited by a
polymer film will reduce its desirability for use as a photometric
standard for FT-IR spectrometry. In practice, both iPP samples that
were tested exhibited some level of dichroism.

As expected, the stress-relieved isotactic sample studied
first had the lowest dichroism. A series of spectra was measured as
the polarizer was rotated through 900 The absorbance at 841 cnf 1

varied by about ±4.5% for this sample, see Figures 1 and 2. When
the same experiment was performed using the extruded iPP, the
absorbance varied by more than a factor of 2 as the polarizers was
rotated through 900. To minimize the effect of dichroism, 2 layers
of the sample were mounted so the orientation of the polymer chains
in each layer were mutually perpendicular. In this case, the
absorbance at 841 cmnI varied by about ±1.2%, as shown in Figures 3
and 4. This method of mounting the sample appears to be the most
promising means of eliminating the effect of chain orientation.

3.2 REPRODUCIBILITY OF BAND CENTER ESTIMATION

The position, full-width at half height (FWWH) and peak
absorbance of a band can vary significantly as a function of
temperature. Obviously, the bands in an ideal sample will exhibit
no significant change in the center wavenumber, full-width at half-
height (FWHH) and peak absorbance of analytically useful bands over
a wide temperature range. Three methods are commonly used for the
determination of the center of a band. In the first the center of
mass (gravity) is calculated. 3 The second involves fitting an entire
band or band multiplet to one or more synthetic bands with well
defined shapes; this method is usually known as curve fitting. In
the third method, known as either the cubic spline or peak-fitting
methods, a cubic equation is fitted to the points around the top of
the peak and the second derivative is calculated; the wavenumber at
which the second derivative is zero is the maximum value of the
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peak. Different algorithms are typically recommended by different
spectrometer manufacturers. The center-of-mass and curve fitting
methods, as incorporated in GRAMS/32 supplied by Galactic
Industries Corporation, were tested in this study, with the genter-
of-mass algorithm typically having twice as good reproducibility as
the curve-fitting algorithm.

To test the temperature dependence of the 841-cm"1 band of
iPP, spectra were measured every 50C from 10 0 C to 50 0 C. Spectra of
the stress relieved iPP sample were measured at 2-cm-1 resolution
(unapodized); the standard deviation of the peak center determined
by the center-of-mass algorithm was 0.011 cm-'. Typical results are
shown in Figures 5 and 6. The same procedure used with the two-
layer extruded iPP sample gave a standard deviation of 0.005 cm',
see Figures 7 and 8.

The standard deviation of the band center for the series
of spectra of the stress relieved iPP samples measured between 10
and 50 0 C obtained by curve fitting using a mixed
Lorentzian/Gaussian band shape was 0.022 cm-' which was twice that
of the center of mass operation, see Figure 9. The corresponding
standard deviation for the extruded iPP sample was 0.017 cm-1, see
Figure 10. Thus it was concluded that the center-of-mass method
gave more reliable results. Of more importance, perhaps was the
fact that the actual value of the peak center reported using the
two algorithms were different by about 0.2 cm', possibly because of
a small peak asymmetry. Thus to obtain consistent results, the same
algorithm should always be used.

Two factors can affect the value of the peak position
reported by the software, the reproducibility of the placement of
the sample in the beam, discussed in d below, and the number of
interpolated data points between each independent datum; in FT-IR
spectrometers, the latter is usually determined by the extent of
zero filling applied to the interferogram.

3.3 INTERPOLATION

In principle, zero-filling4' 5 allows band centers to be
measured more accurately than for non-interpolated data because
there are more data points located near the peak center. This would
be expected to become particularly important if the spectrum is
measured with a resolution numerically greater than the FWHH of the
band of interest. By changing the number of data points used for
the calculation, however, it is possible that the band center
shifts from the value calculated using no zero filling.
Surprisingly, however, the standard deviation for the temperature
dependent series was 0.011 cm'1 for non-zero-filled spectra and
0.015 cm' after zero filling. It can also be seen that there is a
wavenumber shift of about 0.2 cm"' between the zero filled and non-
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zero-filled data, Figure 11.

3.4 PLACEMENT OF SAMPLE AND REPRODUCIBILITY

Small changes in the position at which the sample cell is
mounted in the sample chamber can have even larger effects on the
calculated band center if the diameter of the sample is smaller
than the diameter of the beam in -he sample chamber (i.e. if
vignetting, occurs) 6 This effect can be seen in Figure 12, where the
sample cell was bumped between the measurements of 30 and 35 0 C by
an amount that was just enough to cause the discontinuity in the
series. Ideally, the diameter of the sample should be large enough
to avoid vignetting. The cell used for our measurements did not
allow vignetting. The cell used for our measurements did not allow
us to avoid vignetting, however. This leads to the question of how
reproducible are the series from run to run instead of with in the
series it self. As can be seen from Figures 13 and 14, there is
difference from run to run using the same sample, and that sample
position reproducibility is an important factor.

3.5 VARIATION OF BAND WIDTH, HEIGHT AND AREA WITH TEMPERATURE

The fact that the center wavenumber changes by
considerably less than 0.1 cmI as the temperature is varied by 40 0 C
suggests that the 841-cm-1 band is a good one to use as a standard
for testing the performance of FT-IR spectrometers. We were also
interested in whether iPP could be used as a photometric standard
for commercial FT-IR spectrometers. To be a good photometric
standard, the height and width of the band should also remain
constant as the temperature of the sample is changed. In practice,
this is much more difficult to achieve as the FWHH of most samples
increases with temperature. The width of the band, as estimated by
curve-fitting a spectrum measured at 2 cmn1 resolution, is
approximately 3.3 cm-' and increases from 3.1 to 3.5 cm 1 as the
temperature is increased from 10 to 50 0 C, see Figure 16. As
expected for such a narrow band, the measured width is dependent on
spectral resolution, as shown in Figures 16-23, although the widths
measured at 1 and 2 cm' are essentially identical (as they should
be for unapodized spectra measured with a resolution parameter less
than 0.5). When the iPP spectrum is measured at 8 and 16 cm"1, the
shape of the 841-cmI band changes from largely Lorentzian to that
of the sinc function corresponding to the instrument line shape
(ILS) function of the spectrometer. 7 (None of these spectra are
apodized). For low resolution spectra, the measured FWHH is
approximately equal to maximum optical path difference times 0.61,
i.e., the width is about the same as the FWHH of the sinc ILS
function of an unapodized spectrum. For such spectra, the 841-cm'1
band shows very strong side-lobes, as expected, see Figure 16. The
FWHH of this band increases with temperature, changing from about
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3.1 cm"1 at 100C to 3.5 cm-i at 50 0 C in the spectrum of extruded iPP
when measured with p<1 without apodization, see Figures 16, 17 and
18. The band in the spectrum of the (less oriented, and hence
probably less crystalline) stress-relieved iPP is about 4e-3 cm-1 ,
with very slightly less temperature dependence than the extruded
polymer, see Figures 19, 20, 21, 22, and 23.

As would be expected, the peak absorbance of the band
decreases with temperature, as shown for extruded iPP in Figures
24-26 and for stress-relieved iPP in Figures 27-31. Surprisingly,
the band area varies quite significantly with temperature, as shown
in Figure 32 for stress relieved iPP and Figure 33 for the extruded
polymer. If one assumes that the temperature of most laboratories
is held between 68 and 72 0 F (20-22 0 C), it is probable that the
greatest variance in FWHH, peak height and band area will come from
the amount by which the sample is heated by the infrared beam in
the sample compartment.

The biggest difficulty with using polymer films as
photometric standards is the sample-to-sample variation in their
thickness. It is possible that the film thickness can be measured
prior to mounting them between the BaF 2 windows either from the
interference fringes in the spectra of the unsupported films or
from the small signature in the interferogram. (Both of these
phenomena originate from internal reflection in the film.) We
propose to investigate the feasibility of this during the final
period of this cooperative agreement.

4. CONCLUSIONS

Stress relieved isotactic polypropylene is a reasonable
choice for a performance standard. However this requires two films
to be mounted at 900 to each other to avoid the effects of
dichroism.

For the calculation band centers, there appears to be a
statistical advantage in using the center of mass algorithm over
peak fitting methods. This gives the additional advantage that the
center-of-mass algorithm is more easily automated.

At least a 4x zero fill is required to determine the band
center with any degree of statistical accuracy at resolutions of 2
cm' through 8 cm-1 . Because of the sharpness of the 841-cm1 band (-3
cm-1 FWHH) the spectra measured at a 8 cm1 resolution using a boxcar
truncation function do show the effects of side lobes (see, for
example, Figure 15) and an appropriate apodization function should
be applied.

The reproducibility of sample position appears to be more
important than the effect of band shift due to temperature. Thus
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either the sample must have significantly larger diameter than the
beam or great care must be taken during positioning to guarantee
reproducibility from run to run.

Both the width and height of the 841-cm-i band of
isotactic polypropylene are somewhat temperature dependent.
Nonetheless, this band has many of the properties that are
desirable for a wavenumber and photometric standard.
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Figure 1
Dichroism of Stress Relieved PP
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Figure 3
Dichroism of Extruded PP
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Figure 5
Effect of Temperature on Stress Relieved PP

.6.

.5.

2 .4.

.3-

.2-

8,5 85o d5
Wavenumber (cm-1)

Figure 6

Center of Mass Calculated from 2 cm-1
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Figure 7
Effect of Temperature on Extruded PP
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Figure 8

Center of Mass Calculated from 2 cm-1
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Figure 9

Band Center Calculated from 2 cm-1 Resolution
Spectra of Stress Relieved PP
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Figure 10

Band Center Calculated from 2 cm-1 Resolution
Spectra of Extruded PP
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Figure 11

Band Center Calculated from 4 cm-1 Resolution
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Figure 12

Center of Mass Calculated from 8 cm-1
Resolution Spectra of Extruded PP

840.34

840.32

wn 840.3

S840.28
0
-840.26

5- 840.24

840.22 -

840.2

10 20 30 40 50

Temperature

20



Figure 13

Center of Mass Calculated from 4 cm-1
Resolution Spectra of Extruded PP
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Figure 14

Center of Mass Calculated from 8 cm-1
Resolution Spectra of Extruded PP
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Figure15
Effect of Boxcar Truncation Function on Bands Measured at

Resolutions Greater Than Their FWHH
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Figure 16

Band Width Calculated from 2 cm-1 Resolution
Spectra of Extruded PP
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Figure 17

Band Width Calculated from 4 cm-1 Resolution
Spectra of Extruded PP
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Figure 18

Band Width Calculated from 8 cm-1 Resolution
Spectra of Extruded PP
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Figure 19

Band Width Calculated from 1 cm-1 Resolution
Spectra of Stress Relieved PP
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Figure 20

Band Width Calculated from 2 cm-1 Resolution

Spectra of Stress Relieved PP
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Figure 21

Band Width Calculated from 4 cm-1 Resolution
Spectra of Stress Relieved PP
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Figure 22

Band Width Calculated from 8 cm-1 Resolution
Spectra of Stress Relieved PP
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Figure 23

Band Width Calculated from 16 cm-1 Resolution
Spectra of Stress Relieved PP
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Figure 24

Peak Absorbance Calculated from 2 cm-1
Resolution Spectra of Extruded PP

0.35

0.34 77--,

S0.33 -

• 0.32

S0.31

,< 0.3

0.29

0.28
10 15 20 25 30 35 40 45 50

Temperature

26



Figure 25

Peak Absorbance Calculated from 4 cm-1
Resolution Spectra of Extruded PP
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Figure 26

Peak Absorbance Calculated from 8 cm-1
Resolution Spectra of Extruded PP
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Figure 27

Peak Absorbance Calculated from I cm-1
Resolution Spectra of Stress Relieved PP
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Figure 28

Peak Absorbance Calculated from 2 cm-1
Resolution Spectra of Stress Relieved PP
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Figure 29

Peak Absorbance Calculated from 4 cm-1
Resolution Spectra of Stress Relieved PP0.53
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Figure 30

Peak Absorbance Calculated from 8 cm-1
Resolution Spectra of Stress Relieved PP

0.41

0.4

0.38

0 0.37
0.368

0.35

0.34 -
10 15 20 25 30 35 40 45 50

Temperature

29



Figure 31

Peak Absorbance Calculated from 16 cm-1
Resolution Spectra of Stress Relieved PP
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Figure 32

Area Calculated from 2 cm-1 Resolution Spectra
of Stress Relieved PP
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Figure 33

Area Calculated from 2 cm-1 Resolution Spectra

of Extruded PP

1.6-

1.58

1.56 -

1.54

• 1.52 % Deviation

"1.5 .

1.48

1.46

1.44

10 20 30 40 50

Temperature

31



Blank

32



LITERATURE CITED

1. R.J. Anderson and P.R. Griffiths, Analyt. Chem., 47, 2339
(1975).

2. P.R. Griffiths and J.A. de Haseth, Fourier Transform Infrared
Spectrometry, pp. 23-25, Wiley Interscience, New York, NY,
(1986).

3. D.G. Cameron, J.K. Kaupinen, D.J. Moffatt, and H.H. Mantsch,

Appl. Spectrosc., 36, 245 (1982).

4. P.R. Griffiths, Appl. Spectrosc., 29, 11 (1975).

5. P.R. Griffiths and J.A. de Haseth, Fourier Transform Infrared
Spectroscopy, pp. 98-101, Wiley Interscience, New York, NY,
(1986).

6. P.R. Griffiths and J.A. de Haseth, Fourier Transform Infrared
Spectroscopy, pp. 33-39, Wiley Interscience, New York, NY,
(1986).

7. P.R. Griffiths and J.A. de Haseth, Fourier Transform Infrared
Spectroscopy, pp. 9-23, Wiley Interscience, New York, NY,
(1986).

33


